A Method for Reducing Software Life Cycle Costs

W. O. Paine and J. C. Holland
Quality Assurance DSN, MCCC and Mechanical Hardware Section

The advent of new hardware and software tools permits a new approach to preparing,
presenting, and maintaining software specifications and corresponding source programs.
The method described could significantly reduce many of the associated costs compared

with techniques now in general use in industry.

l. Introduction

Software life-cycle costs typically include all of the man-
power, equipment usage, and documentation costs necessary
to design, implement, and maintain computer software
throughout its life. Indirect costs, which are often excluded
from this grouping, are the net consequences to operations
resulting from the use of the “finished” software. Thus, if
software is placed into use while still seriously in error, the
indirect cost to operations could be greater than the typical
total life cycle cost. On the other hand, correct and well
designed software, delivered and used in a timely manner,
could yield a significant saving to an operational activity.
Effective ways of reducing typical costs while maintaining or
improving software quality should lead to an improvement in
indirect costs.

When software costs are closely examined, it is seen that
skilled manpower is now the major contributor and is the most
rapidly increasing cost (Ref.1). Within the range of such
human activities, it appears that designing and testing efforts
are the major parts and that the underlying planning, analyz-
ing, and communicating aspects of this effort are major por-

186

tions. Thus, any real reduction in software life cycle costs
must make highly skilled human effort more efficient, espe-
cially on large, complex, and long-lasting software projects.
When these skilled human functions are examined closely, it is
seen that critical factors include the way one communicates
with oneself and then with others and finally with computers.
Thus, there has been a long and active proliferation of pro-
gramming languages and, more recently, a number of pro-
gramming design languages to supplement older methods, such
as flowcharting. One way to achieve cost reduction is to
provide documentation tools whose use increases the effective-
ness of skilled humans (Ref. 2).

ll. Proposed Method

A. Conceptual Principles
The conceptual principles that must be met are:
(1) The design document and resulting computer code

should be as closely connected as possible, both phys-
ically and in descriptive terms.



(2) The design should be readily understood by the non-
programming “user” or ‘“client” who provided the
original requirements.

(3) The design and code should be readily understood and
found comparable by all programmers involved in the
preparation and verification of the software throughout
its life.

(4) The complete design and source program document
should be in a machine-readable form, such that it may
be readily stored and processed on one computer. At
some point it should be kept on a common single
storage device such as a tape or a disk. Thus, it should
be possible to also move a copy of the entire machine-
readable document at once to an alternate processor
for more convenient use, special testing or printing.

(5) Document updating methods should force some consid-
eration of possible updating of both the design and
source code on every occasion.

(6) There should be an automatic annotation on each page
of the document showing the date of the update ver-
sion number, and clearly identifying changes made
from the previous version.

(7) Pagination and other systematic identification to reveal
design structure should be at least semi-automatically
produced for accuracy, consistency, and cost-saving
convenience.

(8) The method should be independent of the choices
made for programming languages and target computers.

B. Hardware and Software Tools

The fairly recent advent of important new hardware and
software tools permits the solution shown in Subsection C.
However, other tools are available which would allow other
approaches to satisfying the conceptual principles given in
Subsection A. In any event, a few new and/or expanded soft-
ware tools would be required to achieve the systematic, opera-
tional use of the proposed method. The cost of producing the
new software tools should be a very small fraction of the
potential savings and certainly would be significantly less than
the cost of a compiler or an assembler.

In the proposed method, tools which were conveniently at
hand were used to illustrate the approach. Perhaps better or
more suitable tools may become available later. The key hard-
ware tool employed is the IBM 3800 (laser) printer. It is
described in Refs. 3 and 4. However, for our purposes, it is

enough to note that it permits 20 type fonts, up to 204
characters per line and up to 12 lines per vertical inch
(2.54 cm). The laser (non-impact) principle yields printing of
exceptional quality, approaching that of true graphics arts.
The number of multiple copies needed may be specified by a
single card with each use, and bursting and trimming are also
under program control. The overall capability and flexibility
of this printer would allow entire finished detailed design
documents, including graphics, to be done at one time.

The key software design tool employed for this example is
a program design language currently available on the JPL
UNIVAC 1108 called SDDL (for Software Design and Docu-
mentation Language) (Ref. 5). In an operational system, code
positioning would be either semi- or completely automatic as
code is developed to fulfill design statements.

C. Details of the Proposed Method

Three new modes of displaying software under develop-
ment, or as permanent documentation for field-released ver-
sions, are shown in Figs. 1 through 3.}

The first of the display modes (see Fig. 1) offers the ability
to explicate the nature of the program and its structure in
terms of natural language. This feature has the great advantage
of eliminating the need for condensing identifiers into obscure
mnemonics or restricting the commands to a set of reserved
words known to any specific compiler or assembly language.
The invented delimiters “DO.UNTIL” and “END.DO” of
Fig. 1 serve to indicate a loop within the CMSP1 program, a
fact established by a simple directive to SDDL (discussed
below).

The flexibility of this language is demonstrated by the
definition of the word “EXECUTE” as an indication of calling
a subroutine, a fact indicated by the horizontal arrows termi-
nating upon empty parentheses. It is assumed here that the
documentation and programming are still under development,
and the subroutines referred to have not yet been defined.
Words such as “SET” in the instruction “SET STOP =
FALSE,” which might in some cases be viewed as auxiliary
and only for the purpose of aiding readability, are admissible
in such a flexible language as SDDL, just as is the usage of the
“END.IF” to delimit the logic of an “IF... THEN...
ELSE ... ENDIF” paragraph. It should be noticed also that
the auxiliary word “THEN” is omitted in Fig. 1. The invented
delimiter “FINIS” marks the termination of each program
module.

1Figures 1, 2, and 3 are constrained by printing space in this publica-

tion. In operational practice the limits would permit up to 204
characters per 13.6-in. (34.5-cm) line and either 6, 8 or 12 lines per
inch (2.54 cm).

187



The SDDL processor automatically indents the text pre-
sented to it in a manner which reflects the underlying struc-
ture, as set forth by the definitions of modules, blocks, and
escapes within that language. The user may override or modify
this indentation by the use of further directives, if he so
desires.

The second mode of display afforded by the combination
of SDDL and the capability of the IBM 3800 printer is that of
the combined SDDL and generated object code — in an inter-
leaved manner — as shown in Fig. 2. The SDDL language
allows for the separation of source statements as an arbitrary
point designed by a pound sign (#). The portion of the
statement to the right of the pound sign is right-justified on
the printed output, and is reserved for comments (i.e., has no
effect on the structuring of the SDDL statements, as seen by
this language processor, with respect to modules, blocks or
other structures). The object-language statements, in whatever
language is appropriate, may be coordinated with the SDDL
statements by placing them in these fields. Auxiliary directives
to the SDDL processor may be used to justify certain fields of
the object language to certain margins for the sake of
uniformity.

The third mode of presentation of the documentation, as
shown in Fig. 3, involves a side-by-side listing of the program
design language and the completed object code. Here the
SDDL statements may, if desired, contain code numbers allow-

ing coordination of these statements with the finished object
code. Because of the presence of embedded code modules
which may be developed separately (and displayed separately,
as in the second mode described above), the final object
program and its associated SDDL code will not necessarily
present the simple correspondence afforded by the interleaved
listing of the previous mode. The use of identifying numbers
would, nevertheless, allow the two forms of the same program
to be associated in a statement-by-statement manner.

lll. Advantages of the Method

The method, when compared with many existing tech-
niques, offers several advantages. By placing both the struc-
tured design and resulting code on a single page such that they
may be read separately or together meets the needs of all users
of the document while reducing production and maintenance
costs. The designer and programmer, while working in both
the development and maintenance modes, are encouraged to
read, compare, and maintain both parts of the finished docu-
ment. It is expected that the clarity and convenience alone
would make the method attractive to both end users and
implementers. The auditing of code vs design (Ref. 6) would
become more efficient. Finally, a step is taken in the direction
of allowing future semi-automation in software validation and
verification, by virtue of the fact that such a well-structured
presentation lends itself well to the processing of inductive
assertions.

188

39

References

. Gilb, T., Software Metrics, Winthrop, Cambridge, Mass., 1977.
. Tausworthe, R., Standardized Development of Computer Software, SP 43-29, pp. 1-8,

Jet Propulsion Laboratory, Pasadena, Calif., July 1976.

- Introducing the IBM 3800 Printing Subsystem Audit Programming, IBM Manual

GC26-3829-4, November 1976.

. IBM 3800 Printing Subsystem Programmer’s Guide, IBM Manual GC26-3846-1,

September 1976.

. Kleine, H., SDDL-Software Design & Documentation Language, Publication 77-24, Jet

Propulsion Laboratory, Pasadena, California, May 15, 1977.

- Holland, J. C., and Paine, W. O., “An Error-Minimizing Software Audit Technique,” in

The Deep Space Network Progress Report 42-32, pp. 201-221, Jet Propulsion Labora-
tory, Pasadena, California, Apr. 15, 1976.



PROGRAM CMSP1

EXECUTE INITIALIZATION

DO.UNTIL ENDRUN = TRUE

EXECUTE FIRST.PROGRAM.STAGE

IF STOP = TRUE
SET STOP = FALSE
ELSE

IF COMMAND.VALIDATION = TRUE
EXECUTE SECOND.PROGRAM.STAGE

ELSE

END.IF

IF STOP = TRUE
SET STOP = FALSE

ELSE
EXECUTE THIRD.PROGRAM.STAGE

END.IF
END.IF
END.DO

EXECUTE TERMINATION.PROGRAM

FINIS

SSD-DMC-50864~0P

MODULE NAME CMSP1
DATE 7/15/76
REV A 9/15/76
——————————————————————————————————— >CC N
——————————————————————————————————— >CC )
——————————————————————————————————— >CC )
——————————————————————————————————— >CC )
——————————————————————————————————— >CC )
TITLE DATE INT'S
PREPARED
CHECKED
APPROVED

Fig. 1. Program design language sample



190

PROGRAM CMSP1

EXECUTE INITIALIZATION

DO.UNTIL ENDRUN = TRUE

EXECUTE FIRST.PROGRAM.STAGE

IF STOP = TRUE

SET STOP = FALSE

ELSE

IF COMMAND.VALIDATION =

EXECUTE SECOND.PROGRAM.STAGE

ELSE
END.IF

IF STOP = TRUE

SET STOP = FALSE

ELSE

EXECUTE THIRD.PROGRAM.STAGE

END.IF
END.IF
END.DO

EXECUTE TERMINATION.PROGRAM

FINIS

TRUE

SSD-D
MODUL
DATE
REV

PREEX EQU $

CMS20 EQU $

PS1 EQU $

TBMB,FLAG

OBMM, FLAG

CMS60 TBMB,FLAG

PS2 EQU $

CMS80 TBMB,FLAG
OBMM, FLAG
BRU

CMS120 EQU ¢
PS3 EQU $

CMS130 TBMB,FLAG

CLOSE EQU $

MC-5084~-0P
E NAME CMSP1
7715776
A 9715776

INSERT CODE

INSERT CODE

STOP,CMS60

STOP

VALDTE, CMS380

INSERT CODE

STOP,CMS120

STOP
CMS136

INSERT CODE

ENDRUN, CMS20

INSERT CODE

TITLE

DATE INT'S

PREPARED

CHECKED

APPROVED

Fig. 2. Program design language with interleaved code



SSD-DMC~-5084-0P

FINIS

MODULE NAME CMSP1
DATE 7715776
REV 9715776
PROGRAM FIRST.PROGRAM.STAGE
SET INITIAL.STAGE = NOT COMPLETED OBMM, FLAG PRERTD
ESTABLISH INTERRUPT.SUPPORT.PROCESSOR.1.TASK
REX, EST
DFC e
DFC aIPl
DFC 80
DFC aLM
STM, 2 IP1IRCB
ESTABLISH BACKGROUND.REAL.TIME.1.TASK
REX,EST
DFC 0
DFC ABR1
DFC 90
DFC alLM
STM, 2 BR1RCB
ACTIVATE INTERRUPT.PROCESSOR.1.TASK
REX,ACT
DFC 0
DFC AIP1
DFC 6,0
DO.UNTIL INITIAL.STAGE = COMPLETED PS130 EQU $
TBMB, FLAG PRERTD,PS150
HOP,PS180
RELINQUISH PS150 REX,RLNQ
END.DO BRU P5130
DE-ESTABLISH BACKGROUND.REAL.TIME.1.TASK
PS180 REX,DEEST
DFC 0
DFC aBR1
ZRR,1
STM, 1 BR1RCB
DE-ESTABLISH INTERRUPT.PROCESSOR.1.TASK
REX,DEEST
DFC 0
DFC AIP1
ZRR,1
STM, 1 IP1IRCB
TITLE DATE INT'S
PREPARED
CHECKED
APPROVED

NASA—JPL—Coml., LA, Calif.

Fig. 3. Parallel program design language and code

191



